
NOTATION 

~, absorption coefficient of the medium, m-~; w, specific heat of the mass flow rate of 
the gas, W/deg; ao, Stefan-- Boltzmann constant; Tt, theoretical combustion temperature, ~ 
Tz, temperature of the beginning of the process, ~ ar, aw, af, absorptivities of the heat- 
ing surface, the wall, and the volume of the chamber; Hr, area of the heating surface; l, 
h, chamber length and height, m; g v, visible emissivity; 4, degree of shielding; @, angular 
coefficient between the ray-perceiving surface and itself; ey, ew, dimensionless temperatures 
of the waste gases and the wall; Bo, Bu~ Boltzmann and Bouger criteria. 
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RADIANT HEAT CONDUCTION IN A LAYER WITH A HIGH 

PARTICLE CONCENTRATION 

Yu. A. Popov UDC 536.3 

The optical thickness of a layer with a high particle concentration is computed by 
the Monte Carlo method. The radiant component of the heat conduction is found. 

The following expression is obtained in [i] for the optical thickness of a medium with 
a high particle concentration: 

nO G ' 
~o = p,  t .  (I) 

This formula has been obtained in the geometric optics approximation for the case of opaque 
chaotically arranged particles. To clarify the limits of applicability of (I), a computation 
has been carried out by the method of statistical tests for the transmisslvlty of a medium D 
containing opaque, optically large-scale particles of identical radius. An arrangement of 
100 particles of radius 0.075 has been modeled in a volume in the shape of a parallelepiped 
of dimension 1 x 1 • L. The length dimensionality plays no part in the geometric optics ap- 
proximation. The coordinates of the particle centers were determined by using a standard 
program to obtain pseudorandom numbers. The mutual penetration of the particles was excluded. 
The volume was filled sequentially. The greater the number of particles and the smaller the 
porosity, the more difficult it is to seek free space for the particles. The porosity was 
varied between P' = 0.911 and 0.646 by changing the length L of the parallelepiped. A 
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Fig. i. Dependence of the optical thick- 
ness of the layer on porosity: dashed 
line, calculation by formula (i); points, 
calculation by the Monte Carlo method 
at the same values of the limiting 
optical thickness. 

parallel beam of photons incident perpendicularly to the facet I x I Was modeled by generat- 
ing pseudorandom coordinates distributed uniformly in [0, I]. The contiguity of the photon 
trajectory to the particles was verified. If a photon is contiguous to particles, then it is 
considered to have left the beam because of absorption or scattering. The transmlssivity 

D = e-'0 (2) 

was determined as the ratio between the number of photons which have passed and the number 
of incident photons. The peripheral region near the side surface of the paralleleplped with 
the thickness of the particle radius was not considered since the density of the substance 
near the boundary is less than the mean density. This has been shown experimentally in [2]. 
For each particle arrangement, 3000 photons have been tested. The computations were per- 
formed on a "Minsk-22" electronic digital computer. The pseudorandom number transmitter was 
taken from the library of autocode programs "Inzhener." R. L. Shvartsblat compiled the com- 
putation program. The results of the computations are represented in the figure, from which 
it follows that a computation by means of (i) is satisfied up to the values P' ~ 0.8. A 
comparison of the computation by means of (i) with the results of the modeling has been made 
for identical values of the quantity T~ = nos'L. For P' < 0.8 formula (i) can be used only 
for approximate computations. 

The optical thickness of a medium is related to the photon mean free path in the medium 
[3] 

I = L/%. (3) 

If the particles are spherical, of identical diameter d, then we obtain from (i) 

2 P'd 
l P' (4) 3 lw 

Starting from the diffusion approximation and considering the scattering index spherical and 
the particles gray, the following formula is obtained in [4] for the coefficient of radiant 
heat conductivity of the medium: 

= ! 6  (5) 
3 

Taking account of (4) and (5) we find 

32 P '  
%r = - - - - a T S d "  

9 I ~ P '  

This formula can be used to estimate the radiant component of the heat conductivity of a 
medium with an elevated particle concentration. 

(6) 

NOTATION 

�9 ol op_tieal thickness of the layer; L, layer thickness; P', porosity; o', mean particle 
midsection; d, particle diameter; no, mean number of particles per unit volume; D, transmis- 
sivity; ~, photon mea~ free path in the medium; At, radiant component of the effective 
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heat conductivity of the medium; o~ Stefan -- Boitzmann Constant; T, eemperature, ~ x~j 
o p t i c a l  t h i c k n e s s  f o r  u n i t  p o r o s i t y .  
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THERMAL INSTABILITY OF A VISCOELASTIC FLUID LAYER 

WITH LIFT AND THERMOCAPILLARY FORCES TAKEN 

INTO ACCOUNT 

F. A. Garifullin IIDC 532.135 

The stability problem of a viscoelastic fluid layer of integral type is investi- 
gated by the Fouriermethod during heating from below. The simultaneous effect of 
the lift and thermoeapillary forces is taken into account. The critical values of 
the Rayleigh and Marangoni criteria are determined. 

The stability of a horizontal viscoelastic fluid layer heated from below has been con- 
sidered up to now only under the effect of Archimedes forces [i, 2]. However, another in- 
stability mechanism is possible -- the change in the thermocapillary forces on the free fluid 
surface [3]. In the general case, instability can originate as a result of the simultaneous 
action of these two forces. 

Let us consider an infinite horizontal viscoelastic fluid layer bounded from above by 
an undeformable free surface and from below by a solid mass of finite thickness and heat con- 
ductivity (Fig. i). The surface z = --dx is maintained at the constant temperature T~, and 
heat is transmitted from the free surface z = d to the surrounding medium with temperature 
T~ by convection. 

The thermal boundary conditions of this problem can be formulated in the form 

T-----T o for Z-------d i, (1) 

OT i OT 
T = Tt, ~r Oz ~ for z = 0 ,  (2) 

Oz 

The amplitude 
marion in the form 

OT 
(T- -T2  ~ 2 1 5  for z = d .  (3) 

Oz 
equations of the perturbed state are written in the Boussinesq approxi- 

[ ~ P r - ~ - - , ( ~ ) ( D Z - - ? z ) I ( D Z - - ? 2 ) W = - - R ? 2 O  , 

( ~ - - D 2 - i - ? z ) O = W ,  

( D Z - - ~ - - ~ / ~ ) O  t = O. 

dimensionless variables [2] were hence used. The previous 

The boundary conditions for the perturbations are expressed by the following depen- 
dences: 

@ (0) = O~ (0), DO (0) = ~DO~ (0), 

O i ( - L ) = 0 ,  L=d~/d,  

(4) 

(5) 

(6) 

(7) 

(8) 
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